Scanned with CamScanner




| S

1e point is that you manage the complexity of
1) through the use of hierarchical abstractions. .
chical abstractions of complex systems can also be applied to compt=
ms. The data from a traditional process-oriented program canbet PR %
y abstraction into its component objects. A sequence of process steps arn BEET ﬁh*
ollection of messages between these objects. Thus, each of these objects R
unique behavior. You can treat these objects as concrete entities that 1'99{!9!7!5b
ssages telling them to do something. This is the essence of object-oriented Pfogfm ‘_
Object-oriented concepts form the heart of Java just as they form the basis for mm
~understanding. It is important that you understand how these concepts translate into
- programs. As you will see, object-oriented programming is a powerful and natm&l

~ paradigm for creating programs that survive the inevitable changes accompanying the
life cycle of any major software project, including conception, growth, and aging. For
example, once you have well-defined objects and clean, reliable interfaces to those objects,
you can gracefully decommission or replace parts of an older system without fear.

The Three OOP Principles

~ All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism.
Let’s take a look at these concepts now.

~ Encapsulation '
~ Encapsulation is the mechanism that binds together code and the data it manipulates,
- and keeps both safe from outside interference and misuse. One way to think about
sulation is as a protective wrapper that prevents the code and data from being -
arily accessed by other code defined outside the wrapper. Access to the code
ata inside the wrapper is tightly controlled through a well-defined interface.
2 this to the real world, consider the automatic transmission on an aut
lates hundreds of bits of information about your engine, such g,a{ |

e user, have only one method of affecting this

omp
g o
- - K

shift lever. You can’t affect the transmission by

Scanned with CamScanner



»n class contains the structure a
‘out by a mold in the shape of the class. F
red to as instances of a class. Thus, a class is a log

u create a class, you will specify the code and data that constitute
llectively, these elements are called members of the class. fically,
by the class are referred to as member variables or instance variables. The ¢
serates on that data is referred to as member nethods or just methods. (If you
' familiar with C/C++, it may help to know that what a Java programmer callsam
& a C/C++ programmer calls a function.) In properly written Java programs, the methods.
- define how the member variables can be used. This means that the behavior and interface
of a class are defined by the methods that operate on its instance data. N
Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable
in a class may be marked private or public. The public interface of a class represents =
everything that external users of the class need to know, or may know. The privafé' o

methods and data can only be accessed by code that is a member of the class. Therefore,

any other code that is not a member of the class cannot access a private method or variable.

. Since the private members of a class may only be accessed by other parts of your pmg:'apt 3
through the class’ public methods, you can ensure that no improper actions take place
)

Of course, this means that the public interface should be carefully designed not to expese
too much of the inner workings of a class (see Figure 2-1). o

Inheritance
Inheritance is the process by which one object acquires the properties of another obje .
This is important because it supports the concept of hierarchical classification. As
mentioned earlier, most knowledge is made manageable by hierarchical (that is, to >-dowl
classifications. For example, a Golden Retriever is part of the classification dog, ¥

in turn is part of the mammal class, which is under the larger class animal. Wit -
use of hierarchies, each object would need to define all of its “teristics
However, by use of inheritance, an object need only define those qus litie
unique within its class. It can inherit its general attributes from its par
" inheritance mechanism that makes it possible for one object to be
' amore general case. Let’s take a closer look at this process.

3 . g

P =

W ‘“':"f_!,'l_’.-'\v

o YRR

Scanned with CamScanner



le n.aturally view the world a
rct way, such as animals, mammals, and dogs.

s made up of objects

that are related to each
N an abstract way, you would say they have some alf You wanted to des _
type of _skeleta-l system. Animals also have certain behavia S SkZe,
¢ and sleep. This description of attributes and behiier 1:13;:1 aspects;
to describe a more specific class of animals, such <. Ly gt e SR
pecific attributes, such as type of teeth, s“ﬂhag T th T

Scanned with CamScanner




Scanned with CamScanner



Scanned with CamScanner



ilation, and In A
operly applied, polymorphism, encapsulation, and inheritance combin -
a Ing environment that supports the development of far more
scaleable programs than does the process-oriented model, A well-designed hierarchy
of classes is the basis for reusing the code in which you have invested time and effort
developing and testing. Encapsulation allows you to migrate your implementations over
time without breaking the code that depends on the public interface of your classes.

ism allows you to create clean, sensible, readable, and resilient code.
Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, =
but cars are more like programs. All drivers rely on inheritance to drive different tvpes 3
(subclasses) of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche,

or the family minivan, drivers can all more or less find and operate the steering wheel,
the brakes, and the accelerator. After a bit of gear grinding, most people can even ‘”

manage the difference between a stick shift and an automatic, because they fundaumiaily! |

understand their common superclass, the transmission. 14

People interface with encapsulated features on cars all the time. The brake and s

gas pedals hide an incredible array of complexity with an interface so simple you can ‘ 1
operate them with your feet! The implementation of the engine, the style of brakes, i F
and the size of the tires have no effect on how you interface with the class definition
of the pedals. +
The final attribute, polymorphism, is clearly reflected in the ability of car manufacturer :

to offer a wide array of options on basically the same vehicle. For example, you can ge : ¥

an antilock braking system or traditional br akes, power or rack-and-pinion steering, 4-,

6-, or 8-cylinder engines. Either way, you will stil] press the break pedal to stop, turn
the steering wheel to change direction, and Press the accelerator when you Wﬁ no: :

5]

The same interface can be used to control a mumber of iy feroe o
As you can see, it is throug the applicatio er of different impleme

polym '

The sa

orphism that the individual parts are trapafern. b 2O i

me is also true of ¢
the various parts

, robust, maint

Scanned with CamScanner



